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Introduction

�

Purpose: Provide API for passing image processing
data between filters and a scheme for executing
pipelines on large machines.

�

Goal: Easy to learn and use.

�

Goal: Give users data-parallel execution "for free".

�

Goal: Enable further middleware research.

�

ISP was influenced by MapReduce from Google and
GridDB from UC Berkeley
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Overview

�

Filters are linked to libisp.a, include isp.h.

�

The shell and UNIX pipes tie filters together.

�

Pipes carry XML stream of “work units”.

�

Work units contain files (passed by reference).

�

Work units contain metadata (passed by value).

�

Filters produce, consume, or pass through data.
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ISP Architecture
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ISP Filters Process “Work Units”
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Application Programming Interface
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Filter Mainline Interface

Initialization and Finalization

void isp_init(int flags, int argc, char *argv[]);

void isp_fini(void);

Unit Creation and Destruction

isp_unit_t isp_unit_create(int seq);

void isp_unit_destroy(isp_unit_t u);

Unit Read and Write

isp_unit_t isp_unit_read(void);

void isp_unit_write(isp_unit_t u);

Unit Map

typedef int (*isp_mapfun_t)(isp_unit_t u, void *arg);

void isp_unit_map(isp_map_fun_t mapfun, void *arg);
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Filter Mainline Example

#include <isp.h>

int MyFun(isp_unit_t u, void *arg);

int main(int argc, char *argv[]);
{

isp_init(ISP_SOURCE | ISP_SINK | ISP_PARALLEL, argc, argv);
isp_unit_map(MyFun, NULL);
isp_fini();

}
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Map Function Interface

File Manipulation

int isp_file_source(isp_unit_t u, char *key, char *path, int readonly);

char * isp_file_update(isp_unit_t u, char *key);

char * isp_file_peek(isp_unit_t u, char *key);

int isp_file_sink(isp_unit_t u, char *key);

int isp_file_rename(isp_unit_t u, char *key, char *newpath);

char * isp_mktmp(int *fd);

Metadata Manipulation

int isp_meta_source(isp_unit_t u, char *key, char *val);

int isp_meta_sourcef(isp_unit_t u, char *key, char *fmt, ...);

int isp_meta_update(isp_unit_t u, char *key, char *val);

char * isp_meta_peek(isp_unit_t u, char *key);

int isp_meta_peekf(isp_unit_t u, char *key, char *fmt, ...);

int isp_meta_sink(isp_unit_t u, char *key);
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Map Function Example

float GetFITSFloat(char *path, char *name);

int MyFun(isp_unit_t u, void *arg)
{

char *path = isp_file_peek(u, "fits");

if (path == NULL) {
err("could not find fits file in input");
return ISP_RET_FAIL;

}
isp_meta_sourcef(u, "X", "%f", GetFITSFloat(path, "X"));
isp_meta_sourcef(u, "Y", "%f", GetFITSFloat(path, "Y"));

return ISP_RET_OK;
}
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Data-Parallel Execution
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Kinds of Parallelism

�

Pipeline parallelism - filters execute concurrently, each
processing work units sequentially.

�

Data Parallelism - filters process multiple work units
concurrently.

�

Algorithmic Parallelism - filters execute a parallel
algorithm on each work unit.
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Data-Parallel Execution

�

Map function is executed concurrently on work units.

�

Filter requests parallelism via ISP_PARALLEL flag.

�

Data-Parallel implementation could use...

�

Pthreads on an SMP.

�

Fork/exec on an SMP.

�

Resource Manager on a distributed memory
machine.

�

The implementation is hidden from filter programmers.
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Data-Parallel Execution with Pthreads

�

Main thread manages work crew of threads.

�

Mutexes protect XML I/O.
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Data-Parallel Execution with Fork/exec

�

Parent manages work crew of slave processes.

�

Parent must multiplex several I/O streams.
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Data-Parallel Execution with SLURM

�

Allocator manages requests for CPU/nodes (FIFO).

�

Each slave handles one work unit.

�

Filter programmers do not need to understand this!
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ISP Scripts

�

This script can run standalone, under srun
(interactive), or under psub (batch).

#!/bin/bash
if test $SLURM_NODEID; then

if test $SLURM_NODEID != 0; then
exit 0

fi
ispallocd -S &

fi
filter1 | filter2 | filter3 >results.xml
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Example: SuperMACHO Photpipe
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Photpipe Introduction

�

Photpipe performs photometry tasks for the
SuperMACHO project.

�

It converts FITS files CMP files.

�

A collection of Perl scripts orchestrates execution.

�

Algorithms are separately developed programs, mainly
“manna” (image flattening), “cdophot” (source
detection), and “cleanim” (file format conversion, etc.).
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Photpipe with ISP

�

Implemented QUICKDOPHOT CLEANIM;
DOPHOT CLEANIM stages.

�

Did not implement FLATTEN stage.

�

Some minor algorithmic stuff in perl was converted to
additional “stages” in ISP.

�

Example: some parameters needed for cdophot were
created by reading values from FITS header and
performing arithmetic on them.

�

This was obfuscated by several layers of nested perl
functions in Photpipe.
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Photpipe with ISP
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MCR Photpipe Scaling Study
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MCR Photpipe Runs Nov 2004

71 images (1 amp)
142 images (2 amps)
213 images (3 amps)
284 images (4 amps)
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Status and Future Work
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Version 0.8 Status

�

C API bindings are provided.

�

Sequential and SLURM data-parallel execution are
supported.

�

The API needs to be tested against more use cases.

�

The filter memory footprint can grow large for
long-running pipelines.

�

Packaging/cleanup is needed before the first external
release.
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Future Work

�

Debugging tools?

�

Checkpoint/restart?

�

Logging facility?

�

Bindings for Python, Perl, C++, Java?

�

More sophisticated pipeline-aware scheduling
algorithm?

�

Scheduling for multiple pipelines via SLURM plug-in
scheduler?

�

Use in GridDB for folding/unfolding?
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Disclaimer and Auspices

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by University of
California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

UCRL-PRES-209205
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